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Abstract— Recently, many researchers have made efforts for
accurate calibration of a Time-of-Flight camera to fully utilize
its provided depth values. Yet most previous works focus mainly
on intrinsic calibration by modeling its systematic errors and
noises while extrinsic calibration is also an important factor
when constructing sensor fusion system. In this paper, we
present a calibration process that can correctly transfer the
depth measurements onto the color image. We use 2.5D pattern
so that sufficient reprojection error can be considered for
both color and ToF cameras. The issues on obtaining the
correct correspondences for this pattern are discussed. In the
optimization stage, the depth constraint is also employed to
ensure the depth measurements to lie on the pattern plane. The
strengths of the proposed method over previous approaches are
evaluated in several robotic applications which require precise
ToF and camera calibration.

I. INTRODUCTION

Accurate depth estimation of the scene has been one of

the key research interests for past decades. This field is

essential for a wide spectrum of robot applications, especially

regarding navigation related tasks such as path-planning,

obstacle avoidance, and 3D mapping. However, image based

depth estimation often results in an inaccurate solution due

to its inevitable ambiguity. Therefore, the need for metric

depth measurement has led people to use such devices as

2D laser range finders and 3D Time-of-Flight cameras.

A. Metric sensors for robots

2D laser range finders are commonly used to a large

number of today’s mobile robots due to their high speed

and accuracy as well as large operational ranges. They are

shown to be very effective for various tasks of mobile

robots including map building, localization, and obstacle

detection[6], [18], [16]. However, since a 2D LRF scans a

line at a time, it is usually equipped on a robot platform to

scan its surroundings horizontally, and therefore the depth

measurement is limited to the horizontal plane at the height

of the sensor. Surmann et al.[18] propose a 3D LRF system

by mounting a 2D LRF on a standard servo, which is

controlled to rotate the mounted sensor vertically. Though
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it takes a few seconds to grab enough 3D points to represent

the scene, the strongest advantage of this system is that it is

much cheaper than a 3D Time-of-Flight sensor at that time.

A 3D Time-of-Flight camera modulates its illumination

LEDs, and the CCD/CMOS imaging sensor measures the

phase and the amplitude of the returned signal at each pixel.

As the price of a 3D ToF camera has decreased recently

with better accuracy and higher framerate in smaller size,

many researchers have installed the sensor on the mobile

robots and investigated its feasibilities[20], [15]. Weingarten

et al.[20] compare the characteristics of a 2D LRF and a

3D ToF camera carefully and introduce a system that makes

use of a 3D ToF camera effectively for navigation of a

mobile robot. May et al.[15] compare a highly accurate,

expensive 3D laser scanner with a 3D ToF camera which is

based on the photon mixer device technology[4]. Presumed

that the reliable calibration, lighting adaptation and accuracy

filtering is applied, a 3D ToF camera is shown to have several

advantages over a 2D LRF and a 3D laser scanner including

its small size, weight and mainly its high performance with

up to 30 frames per second.

B. Sensor fusion systems and calibration

In a sensor fusion system, a precise calibration of one

sensor to another is essential in order to analyze the com-

bined information effectively. There are a number of studies

regarding calibration[7], [2], [3]. One of the most popular

calibration methods is proposed by Zhang[22]. It is a homog-

raphy based camera calibration process that uses 2D metric

information of the checkerboard plane. This method has been

extended to extrinsic calibration of a camera and a 2D laser

range finder with the constraint on depth measurements[21].

A 3D ToF camera provides an amplitude image which

represents the amplitude of the returned signals as well as the

3D point cloud of the scene. One might think that since the

ToF camera provides the amplitude images which are very

similar with the traditional grayscale images, the existing

calibration methods would work successfully on estimating

camera pose between a ToF and a color camera as well.

However, the methods dedicated to estimate intrinsic and

extrinsic parameters of color cameras[22] or to extrinsic

calibration of a camera with a 2D laser range finder[21] do

not provide an exact solution to our problem.

The main reason that the traditional calibration methods

do not work well on calibrating camera-ToF sensor fusion

system is the characteristics of the ToF sensor. Unlike a 2D

laser range finder, the depth measurement that a typical 3D

ToF camera provides is inaccurate, and the amplitude images



are in low resolution compared with general color images.

Therefore the process of calibrating sensor fusion system

which includes a ToF camera has to be designed to overcome

the weaknesses of the sensor.

Kim et al.[10] and Fuchs and Hirzinger[5] focus on 3D

ToF sensor fusion system but they concentrate most of their

efforts on intrinsic calibration by modeling the systematic

bias, errors and noises of the sensor. Kahlmann et al.[8] and

Lindner and Kolb [13] use the calibration method of [22]

and [3] on the amplitude images to estimate internal and

external parameters. The depth measurement is not included

for pose estimation and therefore they do not overcome the

low resolution of the amplitude images. Schiller et al.[17]

adds the depth measurement constraint to the method using

a checkerboard plane, but due to the low resolution of

the amplitude images, manual correspondence selection is

inevitable. Kern et al.[9] uses a plane with holes but their

objective is to calibrate a laser scanner which provides much

more accurate depth measurements compared with a 3D ToF

camera. In addition, since their holes are arranged in a grid,

they have to go through another algorithm to identify the

holes, whereas our pattern has holes spread uniquely so that

identification process becomes very simple.

In this paper, we present an extrinsic calibration process

of the sensor fusion system which consists of a color camera

and a 3D Time-of-Flight camera. We have designed a novel

2.5D pattern with 4cm-diameter holes so that the correct

correspondences are obtained automatically. The initial es-

timates of the intrinsic and extrinsic parameters of both

cameras with respect to the pattern plane are obtained using

the homography based calibration[22] implemented in the

open source library[19]. The obtained intrinsic parameters

of the ToF camera are highly incorrect due to the severe

radial distortion of the amplitude images. We refine the

intrinsic parameters and remove the radial distortion from

the images. The camera motion of the color camera with

respect to the pattern plane and that of the ToF camera with

respect to the color camera are optimized by minimizing

reprojection errors and depth measurement errors. The pro-

cess is carefully planned to include the considerations of

the correct correspondence acquisition for reprojection error

minimization, the constraint on the depth measurements, and

the appropriate pinhole camera modeling of a ToF sensor.

The rest of the paper is organized as follows: Section II

explains the traditional calibration methods which are pop-

ularly used as well as their limitations. Section III explains

our approach with details. The effectiveness of our method

is shown in Section IV by performing demonstrations that

require a precise extrinsic calibration of the sensor fusion

system. Section V concludes this paper.

II. CAMERA AND LASER CALIBRATION

METHODS

A. Homography based camera calibration

The homography based camera calibration requires the

camera to observe a particular planar pattern shown at a few

different orientations. The pattern is usually checker so that

it is easy to obtain correspondences using corner detector.

The homography between the model plane and its image is

calculated to get the constraints on the intrinsic parameters.

Let m = [u, v, 1]T and M = [X,Y, Z, 1]T be a 2D and

a 3D point in homogeneous representation respectively. In a

pinhole camera model, the relationship between a 3D point

M and its image projection m is given by

sm = K[R t]M (1)

where s is an arbitrary scale factor. R and t are the

rotation matrix and the translation vector which relate the

world coordinate system to the camera coordinate system

respectively, and K is the camera intrinsic matrix. Assuming

the model plane is on Z = 0 of the world coordinate system,

we have

s[u, v, 1]T = K[r1 r2 t][X,Y, 1]T (2)

where ri is the ith column of the rotation matrix R.

Given an image of the model plane, the homography

H = [h1 h2 h3] can be estimated so that we have

[h1 h2 h3] = λK[r1 r2 t] (3)

From (3), we obtain the following constraints on the camera

intrinsic matrix K using the fact that r1 and r2 are orthonor-

mal.

hT
1 K

−TK−1h2 = 0

hT
1 K

−TK−1h1 = hT
2 K

−TK−1h2 (4)

These constraints construct a homogeneous equation in

Ax = 0 form, which is solvable using singular value de-

composition when sufficient images are provided. Once K
is known, the extrinsic parameters for each image are easily

computed. From (3), we have

r1 = λK−1h1

r2 = λK−1h2

r3 = r1 × r2 (5)

t = λK−1h3

with λ = 1/
∥∥K−1h1

∥∥ = 1/
∥∥K−1h2

∥∥. The solution is

further refined through maximum likelihood inference and

the radial distortion of the camera lens is considered in the

final nonlinear minimization.

In order to obtain an accurate calibration result from

this method, the correct correspondences between the model

plane and its images are crucial. The number of corners has

to be sufficient to calculate homography and they have to

be widely spread to each boundary of the images to get the

reliable estimation of the radial distortion parameters.

B. Camera-laser calibration

There has been a number of studies regarding the pose

estimation of a camera with respect to a 2D laser range

finder[1][21]. The key idea is to take advantage of the depth

measurements from the laser scanner and restrict them onto

the calibration plane in addition to the homography based

camera calibration.



In [21], a camera-laser scanner rig is considered. The in-

trinsic and extrinsic parameters of the camera with respect to

the checkerboard are estimated using the homography based

method. The transformation of the point M in the camera

coordinate system to the point Q in the laser coordinate

system can be represented as,

Q = [RL tL]M (6)

where RL and tL are the rotation matrix and the translation

vector of the camera relative to the laser range finder re-

spectively. In order to estimate RL and tL, the checkerboard

plane is parametrized by a 3-vector N such that N is parallel

to the normal of the plane and its magnitude,
∥∥N∥∥, equals

to the distance from the camera to the plane. From (1),

N = −r3(r
T
3 t) (7)

The laser point Q in the camera coordinate system described

as M̃ = R−1
L (Q− tL) must satisfy N · M̃ =

∥∥N∥∥2 to lie

on the checkerboard plane. Then we have

N ·R−1
L (Q− tL) =

∥∥N∥∥2 (8)

For the measured calibration plane parameter N and the laser

point Q, this gives the depth constraint on RL and tL.

Since the plane parameters are computed using the cam-

era motions, this process depends heavily on good initial

estimates of the camera motions. For a color camera, the

homography based method using the popular checker pattern

gives reasonable intrinsic and extrinsic calibration results

because a set of correct correspondences can be secured.

However, in case of a 3D Time-of-Flight camera, the res-

olution of an amplitude image is very low (e.g. 176x144,

MESATM Swissrangeer 4000) relative to the resolution of

a general color image (e.g. 1280x960, Pointgrey Flea2) and

the radial distortion is severe so that it is hard to obtain

the correspondences using a general corner detector on

checkerboard images.

Additionally, the depth constraint is based on the assump-

tion that the depth measurements from a laser range finder

and the corresponding ray direction is trustworthy. Unlike

a 2D laser range finder, a 3D ToF camera contains several

LEDs aligned in two-dimension. The interference between

the different infrared rays affects the accuracy of the depth

measurement. Therefore, although it is possible to modify

the depth constraint on a 2D laser range finder to be applied

to the 3D measurements of a ToF camera, there has to be

a solution to overcome the inaccurate depth measurements

of the ToF camera in the extrinsic calibration process of

camera-ToF sensor fusion system. In our method, a similar

depth constraint is applied in the optimization process with

preprocessing and modification.

III. THE PROPOSED CALIBRATION

The proposed method makes use of the homography based

calibration. However, we present the solutions to deal with

the problems mentioned above, such as radially distorted low

resolution images and inaccurate depth measurements of a

ToF camera. We take the depth measurements into account

Fig. 1. The 2.5D pattern plane and the camera-ToF sensor fusion system.

TABLE I

DETECTED CORRESPONDENCES IN THE TOF AMPLITUDE IMAGES WITH

AND WITHOUT THE RADIAL DISTORTION

Color images ToF amplitude images
Radially distorted 2481 1287

Radially undistorted 2481 2087

in the optimization process as well as the reprojection errors

computed from the correspondences between the specifically

designed calibration plane and the images.

A. 2.5D pattern plane

To attain a large number of precise correspondences be-

tween the model plane and its images for the calibration of

a ToF camera, we need a new type of pattern that can assure

a reliable feature detection in a blurry low resolution image.

Inspired by [19], we use the pattern consists of black holes

irregularly placed on a plane. They are more robust to be

detected in a low resolution image because the center of a

circular pattern is preserved when the image is isotropically

blurred. Moreover, the matching(i.e. the identification) pro-

cess of the detected circles in the image to the pattern plane

becomes simple because the dots are irregularly spread.

In order to obtain an amplitude image from a ToF camera

as clear as the color image of a black-and-white checker

pattern, we have not printed the pattern on a plane. Instead,

we have particularly designed a 2.5D pattern plane of which

the features can be recognized by the distinctive differences

in the amplitude of the received rays caused by the depth

variations as well as the differences in the color of the plane.

Since the goal is to find the correspondences of the pattern

plane with the amplitude images of a ToF camera as well as

with the images of a color camera, we have constructed a

80cmx60cm pattern board that has 64 holes, as shown in

Figure 1. The diameter of a hole is 4cm, which is large

enough for the infrared rays to pass through the hole so that

the circular patterns are clearly shown in a 176x144-sized

amplitude image.

In Figure 2-(a) the 2.5D pattern plane is shown in a

1280x960 resolution color image. Without loss of generality,

we assume that the pattern plane is at Z = 0 in the

world coordinate system and the coordinates of the centers

of the holes are known. We have designed some careful

preprocessing steps that guarantee more correspondences

from the ToF images. Since the ellipses are still difficult to



(a) (b)

(c) (d)

(e) (f)

Fig. 2. The 2.5D dot pattern plane (a) in a 1280x960 color image, (b) in
a 176x144 ToF amplitude image. (c) The binary image of (b), and (d) the
radially undistorted binary image. (e) A traditional checkerboard plane in a
1280x960 color image, and (f) in a 176x144 ToF amplitude image.

be detected in the original low resolution amplitude images

(Figure 2-(b)), we enlarge the image by 4 times using the

bicubic interpolation and transform them into the binary

images using the constant thresholds (Figure 2-(c)). It is

shown that the image coordinates of the center of the holes

are still well preserved.

However, since the detected ellipses from the image are

considered as the actual holes on the pattern only if they

satisfy the homography constraint, many correctly detected

ellipses are removed from correspondences, considered as

false detection because of the severe radial distortion. There-

fore we use radially undistorted images (Figure 2-(d)) so that

more holes in the image satisfy the homography constraint

and to be considered as the correct correspondences. Ta-

ble 1 shows the total number of detected correspondences

using [19]. We have used 47 color images and 47 ToF

amplitude images in the calibration process. By removing

radial distortions from the amplitude images, the number of

correspondences are increased significantly yielding better

calibration results. This process is fully automatic so that no

manual feature selection is needed.

Optimizing the intrinsic parameters for precise distortion

removal is explained in the next section. In a high resolution

color image and a low resolution ToF amplitude image of

a traditional checkerboard are shown in Figures 2-(e) and

(f) for comparison. The ToF image is too blurry to detect

corners for acquisition of the correct correspondences.

(a) (b)

Fig. 3. The projected 3D measurements of a ToF camera (a) using the
initial estimates of the intrinsic parameters obtained by the homography
based method, and (b) using the intrinsic parameters refined by the pinhole
camera model.

B. Intrinsic parameters of the ToF camera

A ToF camera provides the depth measurements for every

pixel. So the relation between the 3D points in the ToF cam-

era coordinate system and their projections are known by the

manufacturer. In this work, we do not estimate the systematic

errors or noises to improve the intrinsic calibration of the

ToF camera and we rather focus on the extrinsic calibration

between a ToF camera and a color camera.

However, we need the intrinsic parameters for the pinhole

camera model in order to remove the radial distortions from

the amplitude images and to calculate the reprojection errors

in the optimization process. The homography based cali-

bration using the correspondences between the 2.5D pattern

plane and the amplitude images with radial distortion gives

us the initial estimates of the intrinsic parameters of the ToF

camera. Figure 3-(a) shows the reprojected 3D measurements

of ToF camera using the initial estimates of the intrinsic

parameters. The projected points are more distorted as the

image coordinate goes farther from the center due to the

incorrect intrinsic parameters. It is because the intrinsic

parameters are calculated with insufficient circular features

mostly around the center of the amplitude images, instead of

considering every depth measurement of an image which is

essential for calibrating the ray directions.

Therefore we further refine the intrinsic parameters so

that the manufacturer-provided relation between the depth

measurements and their projections can be modeled as a

pinhole camera model. We use LM optimization to minimize

the reprojection errors between all 176x144 depth mea-

surements and their corresponding locations on the image

coordinate. The projected points in Figure 3-(b) are shown to

be rectangular, which means the refined intrinsic parameters

successfully model the ToF camera projections, i.e., the

optimized intrinsic calibration successfully maps the 3D

points onto the amplitude image coordinate.

C. LM optimization

Once the correspondences of the pattern plane in the color

images and in the ToF amplitude images are obtained, and

the correct intrinsic parameters of both the color and ToF

cameras are known, we can find the optimal pose of the

ToF camera with respect to the color camera by minimizing

the reprojection errors. Let the feature point in the ith color



image be xci and in the ith ToF amplitude image be xti.

The image projection of the 3D point Xplane onto the ith

color image is x̃ci, the ith ToF amplitude image is x̃ti;

x̃ci = Kc[Rci tci]Xplane (9)

x̃ti = Kt[Rc2t tc2t]

[
Rci tci
0 1

]
Xplane (10)

where Kc and Kt are the intrinsic camera matrices of the

color camera and the ToF camera respectively. [Rci tci]
is the ith color camera pose with respect to the world

coordinate system and [Rc2t tc2t] is the ToF camera pose

with respect to the color camera coordinate system. Then,

the problem can be represented as an error minimization,

minf(P)=min
∑
i

(
∥∥xci − x̃ci

∥∥2 + wt

∥∥xti − x̃ti

∥∥2) (11)

where P represents the extrinsic camera parameters of

[Rc2t tc2t] and [Rci
tci

] for all i’s. Because the 3D point

Xplane are known and fixed, this optimization goes to more

like a camera-resectioning with a constraint that those two

sensors are relatively fixed.

Using the camera motions given by the homography

based calibration as the initial estimates, the reprojection

error is minimized using Levenberg-Marquardt optimization

technique[12], [14]. The optimized camera motions are then

used to estimate the plane parameters of the pattern plane in

the similar way described in Section II-B in order to enforce

the depth constraint. To constrain the depth measurements

of the plane to be precise, we first distinguish the depth

measurements that should lie on the pattern plane by filtering

out wrongful depth values at the plane boundaries and around

the holes using the plane model prior as shown in Figure 4.

Figure 4-(a) are the depth measurements which fall within

constant thresholds to XYZ coordinates. It is shown that

there are some outliers at the bottom boundary of the pattern

plane which do not belong to the plane. These outliers are

removed by estimating the plane parameters using singular

value decomposition (Figure 4-(b)).

Including the depth constraint, which restricts the selected

depth measurements to be on the plane Z = 0, the mini-

mization problem alters as follows.

minf(P) = min(
∑
i

(
∥∥xci − x̃ci

∥∥2 + wt

∥∥xti − x̃ti

∥∥2) . . .
+
∑

(wpXp(Z))) (12)

wt and wp are the weights to balance the three different

errors. In our experiments, wt = 1/4 and wp = 1/100 which

mean that 4-pixel error in the ToF reprojection and 100mm

error in the depth measurements are considered the same as

1-pixel error in the color camera reprojection. 1 to 4 ratio of

the color-ToF camera reprojection error is reasonable because

the ToF images are upsampled by 4 times in the experiments

for better correspondence search.

Table 2 shows the effectiveness of each step in our method.

We have used 47 color images and 47 ToF amplitude images

with radial distortion removed. We have experimented with

(a) (b)

(c) (d)

Fig. 4. Filtering out depth measurements to enforce the depth constraint
(a) by applying constant thresholds and (b) by applying plane constraint
additionally. The outliers at the bottom boundary of the pattern plane are
removed. (c) and (d) are the depth measurements in 3D space, which are
bottom side views of (a) and (b) respectively.

TABLE II

AVERAGE REPROJECTION ERRORS [PIX] OF COLOR AND TOF CAMERA

AND DEPTH MEASUREMENT ERRORS [MM]

Intrinsic Repr.Err. Depth Color ToF Depth
Refine. Min. Constraint Repr.Err. Repr.Err. Error
1) X X X 0.237 2.276 20.419
2) O X X 0.237 2.247 17.456
3) X O X 0.789 1.632 19.265
4) O O X 0.777 1.630 16.737
5) O O O 0.804 1.666 8.194

5 different settings: with or without intrinsic refinement,

with or without reprojection error minimization on color

and ToF images, and adding depth measurement constraint.

Comparing the experiment 1 with 2 and 3 with 4, the depth

measurement errors are decreased because the provided

3D measurements are aligned with their locations on the

ToF images in the intrinsic refinement process. Comparing

the experiment 2 with 4, the reprojection errors of ToF

images are decreased at the cost of the increased errors of

color images. However, both reprojection errors are still 1-

2 pixels which shows the effectiveness of the reprojection

error minimization using LM optimization. The experiment

5 includes the depth constraint, which decreases the depth

measurement errors significantly at the cost of slight increase

of reprojection errors.

IV. EXPERIMENTAL RESULTS

We have tested our method and two other previous ap-

proaches, namely homography based calibration and camera-

laser calibration methods to our sensor fusion system. The

system consists of a color camera (Pointgrey Flea2) and

a Time-of-Flight sensor (MESATM Swissranger 4000) as

shown in Figure 1. Since it is difficult to get the ground truth

extrinsic camera parameters of the two sensors for evaluation,

we show the performance of our method by two different

applications that require precise extrinsic calibration: 3D

rendering and depthmap upsampling[11].



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 5. 3D rendering results after projection of depth measurements onto color images. (a,e,i) original color images. The projection is due to calibration
results by (b,f,j) homography based calibration method, (c,g,k) camera-laser calibration method, and (d,h,l) the proposed method.

(a) (b) (c)

(d) (e) (f)

Fig. 6. Depthmap upsampling results using joint bilateral upsampling after projection of depth measurements onto color images. The projection is due
to calibration results by (a,d) homography based calibration method, (b,e) camera-laser calibration method, and (c,f) the proposed method.



In Figure 5, we have transfered the depth measurements

onto the color image and rendered in 3D space using Virtual

Reality Modeling Language (VRML). The transferal of the

depth measurements from the ToF camera to the color image

has been performed using the extrinsic calibration results by

the three different methods. From left to right, each column

represents the color image, 3D rendering results using the

homography based calibration, the camera-laser calibration,

and the proposed method. The dataset includes three different

real scenes of various scene depths for evaluation. Figure

5-(a) contains a close scene of which the depth range falls

within 2 meters. The depth ranges of the scenes in Figures 5-

(e) and (i) are around 4 meters, and 10 meters respectively.

The maximum depth measurement of the ToF sensor has

been examined as 10 meters.

In the second column, it is shown that the homography

based methods completely fails to align the depth measure-

ments onto the color image. The camera-laser calibration

shows somewhat better results but still, the depth disconti-

nuities often fails to coincide with object boundaries. The

proposed method shown in the rightmost column success-

fully aligns the depth measurements onto the color image.

This means the estimated pose of the camera to the ToF

sensor is very much precise.

Another application that we have tested is depthmap

upsampling. The ToF camera provides the depthmap of the

scene in 176x144 resolution, which is very low compared

with the resolution of the color image (1280x960). A simple

bicubic interpolation blurs the depthmap at the discontinu-

ities which would eventually lead to problems in further

applications due to wrongful depth assignments. Therefore

we have performed the joint bilateral upsampling[11] which

uses the color guidance of the high-resolution image to

upsample the depth measurements. The correct calibration

of the two sensors is essential to this technique because the

depth measurements have to be assigned in the right location

on the color image to be upsampled.

Figure 6 shows the depthmap upsampling results in

two different datasets. Each row contains the upsampled

depthmaps of the scene in Figure 5-(e) and (i) respectively.

For each column from left to right, we have used the

homography based calibration, camera-laser calibration, and

the proposed method. The upsampled depthmap using the

calibration information by the proposed method has clearer

boundaries due to correct initial depth assignment. We sug-

gest you to enlarge the figures to check the clearity of the

object boundaries.

V. CONCLUSION

In this paper, we have presented an extrinsic calibration

method to estimate the pose of a color camera with respect

to a 3D Time-of-Flight camera. We use 2.5D pattern so

that the correct correspondences are obtained for both color

and ToF cameras. For accurate reprojection error calculation,

we refine the intrinsic parameters of the ToF camera to

model its projection as a pinhole camera model. Depth

constraint which restricts the depth measurement to lie on

the pattern plane is also employed into LM optimization

as well as the reprojection errors. Our process is basically

fully automatic, including the acquisition of sufficient correct

correspondences. The performance of our method is shown

to be very effective for further applications such as 3D

rendering and depthmap upsampling, which require exact

extrinsic calibration of the camera and the ToF sensor.

REFERENCES

[1] Y. Bok, D. Choi, Y. Jeong, and I. S. Kweon. Capturing village-
level heritages with a hand-held camera-laser fusion sensor. In IEEE
Workshop on eHeritage and Digital Art Preservation in conjunction
with ICCV 2009, pages 947 –954, Oct. 2009.

[2] S. Bougnoux. From projective to euclidean space under any practical
situation, a criticism of self-calibration. In the Sixth International
Conference on Computer Vision, pages 790 –796, Jan. 1998.

[3] J. Bouguet. Visual methods for three-dimensional modelling. PhD.
thesis, 1999.

[4] C. C. S. dElectronique et de Microtechnique SA. Swiss ranger sr-2.
2005.

[5] S. Fuchs and G. Hirzinger. Extrinsic and depth calibration of tof-
cameras. In IEEE Conference on Computer Vision and Pattern
Recognition,, pages 1 –6, 2008.

[6] J. Gonzalez, a. Ollero, and a. Reina. Map building for a mobile robot
equipped with a 2d laser rangefinder. In Proceedings of the 1994
IEEE International Conference on Robotics and Automation, pages
1904–1909. IEEE Comput. Soc. Press, 1994.

[7] R. Hartley. An algorithm for self calibration from several views. In
Proceedings of CVPR 1994, pages 908 –912, June 1994.

[8] T. Kahlmann, F. Remondino, and H. Ingensand. Calibration for
increased accuracy of the range imaging camera swissrangerTM. In
ISPRS Image Engineering and Vision Metrology, 2006.

[9] F. Kern. Supplementing laser scanner geometric data with photogram-
metric images for modeling. 18th International CIPA Symposium,
Potsdam, pages 1–8, 2001.

[10] Y. M. Kim, D. Chan, C. Theobalt, and S. Thrun. Design and
calibration of a multi-view tof sensor fusion system. In Computer
Vision and Pattern Recognition Workshops, CVPRW. IEEE Computer
Society Conference on, pages 1 –7, 2008.

[11] J. Kopf, M. F. Cohen, D. Lischinski, and M. Uyttendaele. Joint
bilateral upsampling. ACM Trans. Graph., 26, July 2007.

[12] K. Levenberg. A method for the solution of certain problems in least
squares. Quart. Appl. Math., 2, 1944.

[13] M. Lindner and A. Kolb. Lateral and depth calibration of PMD-
distance sensors. In Advances in Visual Computing, pages II: 524–533,
2006.

[14] D. Marquardt. An algorithm for least-squares estimation of nonlinear
parameters. SIAM J. Appl. Math., 11, 1963.

[15] S. May, B. Werner, H. Surmann, and K. Pervolz. 3D time-of-flight
cameras for mobile robotics. 2006 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 790–795, Oct. 2006.

[16] V. Nguyen, A. Martinelli, N. Tomatis, and R. Siegwart. A comparison
of line extraction algorithms using 2D laser rangefinder for indoor
mobile robotics. In IROS 2005, pages 1929–1934. IEEE, 2005.

[17] I. Schiller, C. Beder, and R. Koch. Calibration of a PMD-camera
using a planar calibration pattern together with a multi-camera setup.
In ISPRS Congress, page B3a: 297 ff, 2008.

[18] H. Surmann, K. Lingemann, A. N, J. Hertzberg, and S. Augustin. A
3D laser range finder for autonomous mobile robots. Symposium A
Quarterly Journal In Modern Foreign Literatures, (April):153 – 158,
2001.

[19] G. Vogiatzis and C. Hernndez. Automatic camera pose estimation
from dot pattern. http://george-vogiatzis.org/calib/, 2010.

[20] J. Weingarten, G. Gruener, and R. Siegwart. A state-of-the-art
3D sensor for robot navigation. In Proceeding of 2004 IEEE/RSJ
International Conference on Intelligent Robots and Systems, volume 3,
pages 2155–2160, 2004.

[21] Q. Zhang and R. Pless. Extrinsic calibration of a camera and laser
range finder (improves camera calibration). In Intelligent Robots and
Systems (IROS), IEEE/RSJ International Conference on, 2004.

[22] Z. Zhang. A flexible new technique for camera calibration. IEEE
Trans. Pattern Anal. Mach. Intell., 22(11):1330 – 1334, Nov. 2000.


